BÀI TẬP VỀ ĐẠO HÀM CÓ LỜI GIẢI
Muốn giải được bài tập đạo hàm giỏi thì trước tiên chúng ta phải coi lại cách làm đạo hàm đã có học ở bài trước. Dựa vào triết lý đó bạn sẽ dễ dàng luyện được năng lực giải bài tập đạo hàm hiệu quả.
Bạn đang xem: Bài tập về đạo hàm có lời giải

Bài tập đạo hàm tất cả lời giải
Bài tập 1: Hãy tính đạo hàm cơ phiên bản sau $y = x^3 – 3x^2 + 2x + 1$
Giải
Sử dụng bí quyết đạo hàm ta có: $y’ = left( – x^3 + 3x + 1 ight)’ = 3x^2 – 6x + 2$
Bài tập 2: cho hàm số có chứa căn như sau $y = frac2x + 1x – 3$. Hãy tính đạo hàm
Giải
Vận dụng bí quyết đạo hàm của hàm hợp: $y’ = frac(2x + 1)"(x – 3) – (x – 3)"(2x + 1)(x – 3)^2 = frac – 7(x – 3)^2$
Bài tập 3: cho 1 hàm số $f(x) = sqrt x^2 – x + 1 + sqrt x^2 + x + 1 $. Hãy tính đạo hàm
Giải
Sử dụng công thức đạo hàm của hàm phù hợp ta giải như sauTa có: $f"(x) = frac2x – 12sqrt x^2 – x + 1 + frac2x + 12sqrt x^2 + x + 1 $Suy ra $f"(x) = 0 Leftrightarrow left( 1 – 2x ight)sqrt x^2 + x + 1 = left( 1 + 2x ight)sqrt x^2 – x + 1 $$eginarrayl Leftrightarrow left{ eginarrayl (1 – 2x)(1 + 2x) ge 0\ (1 – 2x)^2left< left( x + frac12 ight)^2 + frac34 ight> = left( 1 + 2x ight)^2left< left( x – frac12 ight)^2 + frac34 ight> endarray ight.\ Leftrightarrow left{ eginarrayl – frac12 le x le frac12\ (1 – 2x)^2 = (1 + 2x)^2 endarray ight. Leftrightarrow x = 0 endarray$
Bài tập 4: đến hàm số $y = sin ^23x$. Hãy tính đạo hàm
Giải
Đây là hàm con số giác buộc phải ta vận dụng công thức đạo hàm của lượng chất giác suy ra
$y’ = 3sin 6x$
Bài tập 5: cho hàm con số giác $y = sqrt 3 an ^2x + cot 2x $. Hãy áp dụng công thức đạo hàm vị giác nhằm tính đạo hàm
Giải
Vận dụng công thức đạo hàm vị giác cùng hàm hợp:
Ta có: $y’ = frac3 an x(1 + an ^2x) – (1 + cot ^22x)sqrt 3 an ^2x + cot 2x $
Bài tập đạo hàm phân theo dạng
Dạng 1: Tính đạo hàm bởi định nghĩa
Bài tập 1: Cho hàm số f(x) = x2 + 2x, bao gồm Δx là số gia của đối số tại x = 1, Δy là số gia tương ứng của hàm số. Khi đó Δy bằng:
A. (Δx)2 + 2Δx
B. (Δx)2 + 4Δx
C. (Δx)2 + 2Δx – 3
D. 3
Giải
Đáp án: B
Δy = f(1 + Δx) – f(1) = (1 + Δx)2 + 2(1 + Δx) – (1 + 2) = (Δx)2 + 4Δx
Đáp án B
Bài tập 2: Đạo hàm của các hàm số sau tại những điểm đã cho: f(x) = x2 + 1 trên x = 1?
A. 1/2
B. 1
C. 0
D. 2
Giải

Bài tập 3: Đạo hàm của những hàm số sau tại các điểm đang cho: f(x) = 2x3 + 1 tại x = 2?
A. 10
B. 24
C. 22
D. 42
Giải
Đáp án: B
Ta có

Vậy chọn lời giải là B
Dạng 2: Tính đạo hàm bởi công thức
Bài tập 4: Đạo hàm của hàm số y = (2x4 – 3x2 – 5x)(x2 – 7x) bởi biểu thức nào bên dưới đây?
A. (8x3 – 6x – 5)(2x – 7)
B. (8x3 – 6x – 5)(x2 – 7x) – (2x4 – 3x2 – 5x)(2x – 7)
C. (8x3 – 6x – 5)(x2 – 7x)+(2x4 – 3x2 – 5x)(2x – 7)
D. (8x3 – 6x – 5) + (2x – 7)
Giải
Đáp án: C
Áp dụng công thưc đạo hàm hàm hơp (uv)’= u’v + uv’ ta có:
y’ = (8x3 – 6x – 5)(x2 – 7x) + (2x4 – 3x2 – 5x)(2x – 7)
Chọn đáp án là C
Bài tập 5: Đạo hàm của hàm số f(t) = a3t4 – 2at2 + 3t – 5a bởi biểu thức nào sau đây?
A. 4a3t3 – 4at + 3
B. 3a2t4 – 2t2 – 5
C. 12a2t3 – 4at – 2
D. 4a3t3 – 4at – 5
Giải
Đáp án: A
f"(t) = 4a3t3 – 4at + 3
Chọn câu trả lời là A
Bài tập 6: Đạo hàm của hàm số f(x) = a3 – 3at2 – 5t3(với a là hằng số) bởi biểu thức nào sau đây?
A. 3a2 – 6at – 15t2
B. 3a2 – 3t2
C. -6at – 15t2
D. 3a2 – 3t2 – 6at – 15t2
Giải
Đáp án: C
f(t) = a3 – 3at2 – 5t3
f"(t) = -6at – 15t2
Chọn đáp án là C
Dạng 3: Tính đạo hàm của hàm con số giác
Bài tập 7: Đạo hàm của hàm số:


Giải
Đáp án: B

Đáp án B
Bài tập 8: Đạo hàm của hàm số:


Giải
Đáp án: D

Bài tập 9: Đạo hàm của hàm số y = 6(sin4x + cos4x) – 4(sin6x + cos6x) bằng biểu thức làm sao sau đây?
A. 24(sin3x + cos3x) – 24(sin5x + cos5x)
B. 24(sin3x – cos3x) – 24(sin5x + cos5x)
C. 2
D. 0
Giải
Đáp án: D
y’= 6(sin2x + cos2x)2 – 12sin2xcos2x – 4(sin2x + cos2x)2 + 12sin2xcos2x(sin2x + cos2x) = 2
Dạng 4: Đạo hàm của hàm hợp
Bài tập 10. Tính đạo hàm của hàm số: y= ( 5x+ 2)10.
A . 10( 5x+2)9
B. 50( 5x+2)9
C. 5( 5x+2)9
D.(5x+2)9
Giải
Đạo hàm của hàm số đã mang đến là: y’=10.(5x+2)9.( 5x+2)’=50(5x+2)9
Chọn B.
Bài tập 11. Đạo hàm của hàm số y = f(x)= ( 1- 3x2,)5 là:
A. -30x.(1-3x2 )4
B. -10x.(1-3x2 )4
C. 30(1-3x2 )4
D. -3x.(1-3x2 )4
Giải
Đặt u (x)= 1- 3×2 suy ra u (x)=( 1-3x2 )’=(1)’-3(x2 )’= -6x
Với u= 1-3×2 thì y= u5 suy ra y‘ (u)=5.u4=5.(1-3x2)4
Áp dụng phương pháp đạo hàm của hàm hợp ta có :
y‘ (x)= 5.(1-3x2 )4.(-6x)= -30x.(1-3x2 )4
Chọn A.
Bài tập 12. Tính đạo hàm của hàm số : y= ( x3+ x2 -1)2 ( 2x+1)2
A. Y’= ( x3+ x2-1)( 3x2+2x).(2x+1)2+(x3+ x2-1)2.( 8x+4)
B. Y’= 2( x3+ x2-1)( 3x2+2x).(2x+1)2+(x3+ x2-1)2.( 8x+4)
C. Y’= ( x3+ x2-1)( 3x2+2x).(2x+1)2+(x3+ x2-1)2.( 4x+4)
D. Y’= 2( x3+ x2-1)( 3x2+2x).(2x+1)2-(x3+ x2-1)2.( 8x+4)
Giải
áp dụng phương pháp đạo hàm của của hàm hợp và đạo hàm của một tích ta có :
y’=<( x3+ x2-1) >2‘.(2x+1)2+(x3+ x2-1)2.<(2x+1)2>’
Hay y’=2( x3+ x2-1)( x3+ x2-1)’.(2x+1)2+
(x3+ x2-1)2.2( 2x+1).(2x+1)’
⇔ y’= 2( x3+ x2-1)( 3x2+2x).(2x+1)2+(x3+ x2-1)2.2( 2x+1).2
⇔ y’= 2( x3+ x2-1)( 3x2+2x).(2x+1)2+(x3+ x2-1)2.( 8x+4)
Dạng 5: Đạo hàm và các bài toán giải phương trình, bất phương trình
Bài tập 13. Cho hàm số y= 2x3 – 6x2+ 2000. Phương trình y’= 0 gồm mấy nghiệm?
A. 0
B. 1
C. 2
D. 3
Giải
+ Ta tất cả đạo hàm: y’=6x2-12x
+ Để y’=0 thì 6x2-12x=0

Vậy phương trình y’= 0 tất cả hai nghiệm.
Chọn C.
Bài tập 14. Cho hàm số y= x4+ 2x3 – k.x2+ x- 10. Tra cứu k nhằm phương trình y’=1 tất cả một nghiệm là x= 1?
A. K= 5
B. K= -5
C. K= 2
D. K= – 3
Giải
+ Ta gồm đạo hàm: y’= 4x3+ 6x2 – 2kx+ 1.
+ Để y’= 1 thì 4x3+ 6x2 – 2kx+ 1 = 1
⇔ 4x3+ 6x2 – 2kx = 0. (*)
Do phương trình y’= 1 bao gồm một nghiệm là x= 1 đề nghị phương trình (*) có một nghiệm x= 1. Suy ra: 4.13 + 6.12 – 2.k.1= 0 ⇔ 10- 2k = 0
⇔ k= 5.
Chọn A.
Xem thêm: Tải Phần Mềm Giả Lập Card Màn Hình Xịn, Phần Mềm Giả Lập Card Màn Hình
Bài tập 15. Cho hàm số y= 2mx – mx3. Với phần nhiều giá trị như thế nào của m để x= -1 là nghiệm của bất phương trình y" – 1
B. M 2
Bất phương trình y’ 2 2 - 1.
Chọn A.
Dạng 6: Tính đạo hàm ở một điểm
Bài tập 16. Cho hàm số y= x3+ 2x2 – 2x+ 10. Tính đạo hàm của hàm số tại x= 1
A. 5
B. – 2
C. 7
D. 10
Giải
Đạo hàm của hàm số đã chỉ ra rằng : y’= 3x2 +4x- 2
⇒ Đạo hàm của hàm số tại điểm x=1 là y’ ( 1)= 3. 12+ 4.1- 2= 5
Chọn A.
Bài tập 17. Cho hàm số y= 16√x+2x- x2. Tính đạo hàm của hàm số trên x= 4.
A. – 1
B. – 2
C. 0
D. 2
Giải
Tại những điểm x > 0 thì hàm số vẫn cho có đạo hàm cùng y’= 8/√x+2-2x
⇒ Đạo hàm của hàm số đã cho tại x= 4 là : y’ ( 4)= 8/√4+2-2.4= -2
Chọn B.
Bài tập 18. Cho hàm số y= ( 2x+ x2)2. Tính đạo hàm của hàm số trên x= – 1?
A. 0
B. 2
C. – 2
D .4
Giải
Hàm số sẽ cho xác minh với rất nhiều x.
Đạo hàm của hàm số đã cho là:
y’=2( 2x+ x2 )( 2x+ x2 )’ = 2( 2x+ x2 )( 2+2x)
⇒Đạo hàm của hàm số trên x= -1 là y’( – 1) = 0.
Chọn A.
Dạng 7: Đạo hàm và bài toán giải phương trình, bất phương trình lượng giác
Bài tập 19. Cho hàm số: y= sinx+ cosx. Tra cứu nghiệm của phương trình y’=0

Giải

Bài tập 20. Cho hàm số: y= tanx+ cot x. Giải phương trình y’=0

Giải

Bài tập 21. Cho hàm số y=x3+ 3x+ sin3 x. Giải bất phương trình y’ ≥0

Giải
Ta bao gồm đạo hàm: y’=3x2+ 3+ 3sin2x. Cosx
Với phần đông x ta có; cosx ≥ – 1 ⇒ 3sin2 x.cosx ≥ – 3.sin2 x
⇒ 3+ 3sin2x.cosx ≥ 3- 3.sin2 x ⇔ 3+ 3sin2x.cosx ≥ 3.cos2x ( 1)
Lại có 3x2 ≥0 ∀ x (2)
Từ( 1) cùng ( 2) vế cộng vế ta có:
y’=3x2+ 3+ 3sin2x. Cosx ≥3x2+3cos2 x ≥0 với mọi x.
Vậy với đa số x ta luôn có: y’ ≥0
Chọn C.
Xem thêm: Đề Cương Ôn Tập Toán Lớp 3 Học Kỳ 1 Toán Lớp 3 Có Đáp Án Và Lời Giải Chi Tiết
Hy vọng cùng với những bài tập đạo hàm trên đã hữu ích cho các bạn. Gần như góp ý cùng thắc mắc chúng ta vui lòng nhằm lại phản hồi dưới bài viết để dongan-group.com.vn ghi nhận và hỗ trợ.